A THERMO-CHEMICAL SOLUTION

Salt-ammonia reactions, in resorption cycle heat pumps and thermal transformers, for domestic or industrial applications.

Hisham Ahmed, BEng Mechanical Engineering (Warwick)
School of Engineering
The University of Warwick

Professor R.E. Critoph, PhD Supervisor

9th March 2018 • i-STUTE Workshop • Loughborough University
Project aims

• Work on a thermo-chemical solution to the environmental problems
• Researching technology that can provide heating and cooling with greater energy efficiency
• Utilising salt-ammonia chemical reactions within heat powered thermal machines
• Research into resorption cycle heat pumps and thermal transformers
• Domestic and industrial applications
Project background

• Collaboration with Energy research Centre of the Netherlands (ECN)
• Dr van der Pal’s CaCl$_2$ 10kW reactor under test 2016
• Single reactor, evaporating and condensing cycle
Technical introduction

• Solid salt reacting chemically with ammonia gas
• Forming salt-ammonia complex
• Decomposing bonds – heat absorbed
• Synthesising bonds – heat released

\[
\text{exothermic} \quad CaCl_2 + xNH_3 \quad \Rightarrow \quad CaCl_2 \cdot xNH_3 + H_{\text{react}}
\]

\[
\text{endothermic}
\]
Technical introduction

Phase 1
- **LT Salt**
- **HT Salt**

- **60°C**
- **Ammonia flow**

- **Exothermic adsorption** at medium temperature
- **Endothermic desorption** at high temperature

Phase 2
- **LT Salt**
- **HT Salt**

- **0°C**
- **60°C**

- **Endothermic desorption** at low temperature
- **Exothermic adsorption** at medium temperature

2-Salt resorption cycle heat pump

- **Ammonia flow**
- **P_{high}**
- **P_{low}**
- **T_{low}**
- **T_{mid}**
- **T_{high}**
- **$-1000/T$**

- **Ammonia L/G**
- **LT Salt CaCl₂**
- **HT Salt MnCl₂**
Phase 1
- High pressure
- Endothermic desorption at medium temperature
- Exothermic adsorption at high temperature

Phase 2
- Low pressure
- Exothermic adsorption at low temperature
- Endothermic desorption at medium temperature

Technical introduction

2-Salt resorption cycle thermal transformer

- HT Salt
- LT Salt

Temperature:
- High pressure: 150°C
- Medium temperature: 90°C
- Low pressure: 30°C

Salts:
- HT Salt: CaCl₂, MnCl₂
- LT Salt: CaCl₂

Ammonia flow

Graph:
- ln(P) vs. −1000/T
- P_high
- P_low

Warwick
Why resorption, why salts?

• Requires **no electricity** (except for pumps and control) compared with high temperature vapor compression cycles

• Resorption cycles can operate at **lower pressures** than evaporating and condensing cycles,

• Salt-gas **reaction heat is greater than latent heat**

• System **theoretical simplicity** is attractive – no evaporator and condenser

• **Limited number** of research papers on resorption cycle that all show good potential
Challenges

• A single cycle is a batch process rather than continuous
• Expansion/contraction
• Stability of salt and matrix material
• Hysteresis
• Reaction dynamics
• Thermodynamic properties such as \(\Delta H, \Delta S \) for equilibrium lines
• Reactor design is critically important
 • Good heat and mass transfer
Approach

• Computer modelling
• Property measurements

• Experiments
 • Reaction rate – Large Temperature Jump experiments
 • Stability – Long term cycling experiments
 • A rig that can test multiple samples at the same time
 • Gradually increase time period
 • Few weeks or even few months

• Prototype machine testing
 • About 5-10 kW heating output
 • Which represents the average heating demand for a UK dwelling
 • Will also be tested at industrial temperatures
New equipment
New equipment

TMA
- Thermo-mechanical analysis
- A.k.a. Dilatometer
- Measuring expansion and contraction ENG-Salt composite

DSC

TMA
New equipment

DSC
- Differential scanning calorimetry
- Measuring heat absorbed or released from the chemical reactions
New equipment

STA
- Simultaneous thermal analysis
- Combines DSC with weighing function
- Reaction heat
- Gas quantity adsorbed/desorbed

LFA

HFM

TMA
New equipment

LFA
- Light flash analysis
- Light source from a Xenon gas source
- Thermal conductivity measurements of small samples
New equipment

HFM
- Heat flow meter
- Thermal conductivity measurements of large samples
Summary

• Project will investigate salt-ammonia chemical reactions for use in heat driven heating and cooling application

• Project based on resorption cycle which is
 • Theoretically promising and simple
 • Could have a lower capital cost to other sorption technology
 • Improve efficiency and save money

• Project will consist of
 • Property measurements and experimentation
 • A prototype machine
Thank you for your attention
Any questions?

Hisham Ahmed, BEng Mechanical Engineering (Warwick)
School of Engineering
The University of Warwick

Professor R.E. Critoph, PhD Supervisor

9th March 2018 • i-STUTE Workshop • Loughborough University
Cycle A
In phase 1

Low temperature salt

High temperature salt

Space and water heating demand

Air cooled water

Cycle B
In phase 2

Low temperature salt

High temperature salt

Water form high efficiency boiler
Technical introduction

Phase 1
high pressure

Condenser
Salt reactor
Evaporator

Ammonia flow
Endothermic desorption at high temperature

Phase 2
low pressure

Condenser
Salt reactor
Evaporator

Ammonia flow
Exothermic adsorption at medium temperature

1-Salt evaporating and condensing cycle heat pump

\[\ln(P) = \begin{cases} P_{\text{high}} & \text{for } T_{\text{low}} \\ P_{\text{low}} & \text{for } T_{\text{mid}} \end{cases} \]

\[\frac{-1000}{T} \]

Ammonia flow
Ammonia L/G
LT Salt CaCl₂
HT Salt MnCl₂

\(= \text{Open Valve} \)
\(= \text{Closed Valve} \)